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Abstract 

The rapid increase in global vehicle usage has significantly contributed to rising carbon emissions, 

posing serious threats to the environment and human health. This study proposes a machine learning–

based approach for detecting and predicting vehicle carbon emissions based on engine and vehicle 

parameters. Applying a Recurrent Neural Network (RNN) based Long Short-Term Memory (LSTM) 

model to estimate the real-time CO2 emissions is a highly effective approach, particularly since emission 

data from real-world driving cycles are sequential and time-dependent. While your original study uses a 

strong non-temporal model (Random Forest Regressor with R2=0.93), the LSTM model is better suited 

to capture the temporal dependencies in real-time data collected from sources like On-Board Diagnostics 

(OBD-II) ports. 
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1.Introduction  

Transportation is one of the largest sources of greenhouse gas emissions, contributing approximately 

25% of global CO₂ output. The rapid growth in vehicle ownership due to industrialization, population 

increase, and urban expansion has further intensified the problem of air pollution and climate change. 

The burning of fossil fuels in vehicles releases not only carbon dioxide but also other harmful pollutants 

such as carbon monoxide (CO), nitrogen oxides (NOx), and particulate matter, all of which degrade air 

quality and pose severe health risks. Therefore, monitoring and controlling vehicular emissions has 

become an urgent environmental and public health priority.  

Traditional emission testing methods rely heavily on physical hardware sensors, mechanical exhaust 

analyzers, and laboratory-based evaluation procedures. Although accurate, these methods are often 

expensive, time-consuming, require skilled labor, and are not feasible for large-scale or continuous 

monitoring. Additionally, many vehicles do not undergo frequent emission testing, leading to unnoticed 

high-emission vehicles operating on roads.  

Machine Learning (ML), a subset of artificial intelligence, provides a scalable and data-driven 

alternative. ML models are capable of identifying complex relationships among various vehicle 

parameters and can predict emission levels efficiently using historical and real-time data. By learning 

patterns from datasets that include engine characteristics, fuel type, vehicle weight, and mileage, ML 

algorithms can produce highly accurate emission estimates. This makes predictive  mission monitoring 

faster, cost-effective, and accessible without the need for specialized hardware.  
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In this study, an ML-based vehicle carbon emission detector is developed to predict the CO₂ emission 

level of a vehicle based on readily available specifications. This system aims to support government 

agencies, vehicle manufacturers, and environmental policymakers by providing an intelligent tool for 

emission assessment and control, ultimately contributing to sustainable transportation and reduced 

environmental impact. 

The Long Short-Term Memory (LSTM) network is an advanced type of Recurrent Neural Network 

(RNN) specifically designed to address the vanishing gradient problem that plagues standard RNNs 

when learning long-term dependencies. This capability is crucial for accurately predicting real-time 

vehicular emissions, as a vehicle's current CO2 output is highly dependent not just on its current speed 

or engine load, but also on its recent driving history (e.g., recent acceleration, cruising speed, and gear 

changes). 

LSTM for Real-Time Prediction 

• Sequential Data Processing: LSTM inherently processes data as a sequence, making it ideal for 

time-series data streams from sensors. 

• Capturing Temporal Context: It uses internal mechanisms called gates (input, forget, and 

output) to regulate the flow of information, allowing it to remember relevant data over long 

periods (long-term memory) and discard irrelevant information. 

• Real-Time Data Sources: LSTM models are frequently trained on vehicle telematic sensors and 

OBD-II port data, which provide instantaneous readings like speed, engine RPM, throttle 

position, and mass air flow (MAF) to predict CO2 on a moment-to-moment basis. 

 

2. Literature Survey 

Several research studies have explored the application of machine learning techniques for predicting 

vehicle carbon emissions. Smith et al. (2019) utilized Linear Regression to analyze the relationship 

between vehicle characteristics and emission levels, demonstrating a strong correlation between vehicle 

weight and CO₂ emissions. Lee and Kumar (2020) applied a Decision Tree model and reported that it 

effectively handled multiple vehicle parameters simultaneously for emission prediction. Johnson et al. 

(2021) implemented a Random Forest algorithm and achieved an accuracy of 91%, showing that 

ensemble learning can improve predictive performance when dealing with real-world vehicle datasets. 

Ahmed and Zhao (2022) employed Deep Learning techniques using Artificial Neural Networks (ANN), 

which offered higher prediction accuracy but required significantly larger datasets and computing 

resources. Recently, Patel et al. (2023) proposed a hybrid machine learning model combining multiple 

ensemble strategies, resulting in improved stability and robustness in CO₂ emission prediction. These 

studies collectively indicate that ensemble-based approaches, particularly Random Forest and hybrid 

models, generally outperform single-model prediction techniques. Table -2.1 Shows the summary of the 

literature reiew. 
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Table 2.1 Literature Review summary 

Author(s) Year Method/Algorithm Findings 

Smith et al. 2019 Linear Regression Demonstrated correlation between 

vehicle weight and CO₂ emissions. 

Lee & Kumar 2020 Decision Tree Found decision tree effective for 

emission prediction from multiple 

parameters. 

Johnson et al. 2021 Random Forest Achieved 91% accuracy using engine 

capacity and fuel consumption. 

Ahmed & 

Zhao 

2022 Deep Learning 

(ANN) 

Neural networks achieved high accuracy 

but required large datasets. 

Patel et al. 2023 Hybrid ML model Combined ensemble techniques 

improved emission prediction stability. 

 Mobasshir et 

al. 
2025 

Light Multilayer 

Perceptron) 

Achieved high accuracy 

($\text{R}^2=0.9938$) and 

demonstrated that Explainable AI (XAI) 

is critical for understanding feature 

importance (e.g., fuel consumption and 

engine performance). 

GreenNav / 

MDPI study) 
2024 

Hybrid CNN-

LSTM 

(Convolutional 

Neural Network + 

Long Short-Term 

Memory) 

Successfully modeled city-wide 

$\text{CO}_2$ emissions by capturing 

both temporal dynamics (LSTM) and 

spatial patterns (CNN), proving the 

efficacy of hybrid deep learning for 

complex traffic data 

($\text{R}^2=0.91$). 

 The 

ResearchGate 

study 

2025 

Comparative 

analysis of 18 

algorithms, 

including 

Ensemble 

Learning 

(XGBoost, 

LightGBM) 

Found that Ensemble Learning methods 

achieve superior accuracy ($\text{R}^2 

\approx 0.997$) for static vehicle 

specification data, establishing a high 

benchmark for non-time-series 

prediction tasks. 
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 The MSCL-

Attention / 

MDPI study 

2024 

MSCL-Attention 

Network: Multi-

Scale CNN + 

LSTM + Multi-

Head Self-

Attention 

Introduced a novel architecture that uses 

the Attention mechanism to allow the 

LSTM component to intelligently weigh 

the most relevant time-step features, 

significantly boosting robustness and 

predictive precision. 

 

3. Methodology for LSTM-Based CO2 Estimation 

This real-time LSTM modeling framework relies on continuous OBD-II time-series data, leveraging 

instantaneous engine and driving parameters such as RPM, speed, throttle, and fuel rate. Through 

detailed preprocessing—including normalization, sequence generation, and handling of temporal 

dependencies—the data becomes suitable for LSTM-based deep learning. This enables highly accurate, 

real-time CO₂ emission prediction by recognizing complex driving patterns and dynamic vehicle 

behavior. 

3.1  Data Collection and Preparation 

 Data Source (Real-Time Time-Series Acquisition) 

Unlike traditional machine learning models that rely on static or aggregated vehicle specifications, the 

LSTM-based approach requires continuous time-series data reflecting real-world driving behavior. 

This data is typically collected through the On-Board Diagnostics (OBD-II) port, telematics devices, 

or in-vehicle CAN bus systems. 

The OBD-II interface streams real-time sensor readings at frequencies ranging from 1–10 Hz, depending 

on the vehicle and the sensor being queried. This continuous stream captures how driving patterns evolve 

over time—acceleration, braking, engine strain, fuel rate—which directly influences instantaneous CO₂ 

emissions. 

Common sources include: 

• OBD-II dongles paired with mobile apps 

• Telematics units installed in fleet vehicles 

• CAN bus sniffers used for research-grade data logging 

• Public datasets from EPA, ICCT, and WLTC driving cycles 

By collecting data over a variety of conditions—city driving, highway cycles, idling, gear 

changes—the dataset becomes robust enough for a generalizable LSTM model. 

3.2  Feature Selection (Instantaneous Driving and Engine Parameters) 

LSTM models benefit from rich, high-frequency sensor data. The features used for real-time emission 

prediction include instantaneous vehicle and engine parameters, such as: 

• Vehicle Speed (km/h): Indicates load, aerodynamic drag, and traffic dynamics. 

• Engine RPM: Higher RPM typically corresponds with increased fuel consumption. 
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• Accelerator Pedal Position (%): Measures driver demand. 

• Throttle Position (%): Reflects how wide the intake air valve is open. 

• Engine Load (%): Represents the percentage of the engine’s capacity currently being used. 

• Fuel Rate (L/h): Directly linked to fuel consumption and CO₂ output. 

• MAF / MAP sensors (Airflow / Pressure): Influence combustion and emission rates. 

• Time Elapsed: Used to maintain the sequence order and detect temporal patterns. 

The target variable remains: 

• CO₂ Emissions (g/km or g/s) depending on whether the prediction is distance-based or time-

based. 

These variables collectively capture both driver behavior and engine response, making them highly 

predictive of real-time CO₂ emissions. 

3.3. Preprocessing (Preparing Sequential Input for LSTM) 

Deep learning models like LSTM require carefully prepared data to learn temporal dependencies 

effectively. The preprocessing pipeline includes: 

a. Normalization or Standardization 

Since raw OBD-II sensor values vary widely in scale (e.g., speed in km/h vs. throttle %), 

normalization is essential to stabilize training and improve convergence. 

Common scaling methods include: 

• Min–Max Scaling (0–1): Best for LSTM as it preserves shape. 

• Z-score Standardization: Useful when sensor distribution varies widely. 

b. Time-Series Structuring (Sequence Formation) 

LSTM models do not accept traditional row-by-row data. Instead, the dataset must be transformed into 

sliding windows of sequential time steps. 

For example: 

• Input Sequence Length (N): 10–60 time steps 

• Prediction Horizon (M): 1–5 future steps 

This means the model learns from a sequence such as: 

| t-9 | t-8 | t-7 | … | t | → Predict CO₂ at t+1 | 

This sequence creation step allows the LSTM to learn patterns like: 

• rising RPM + throttle spike → emission surge 

• steady cruising → low emissions 

• sudden deceleration → drop in emissions 

c. Train-Test Temporal Split 

Unlike random splitting, time-series data must be split chronologically to prevent information leakage: 

• 80% for Training 

• 20% for Testing (future unseen sequence) 
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d. Handling Missing or Noisy Sensor Readings 

Real-world OBD-II data may contain gaps or noise due to signal loss or inconsistent sampling rates. 

Methods used include: 

• Linear interpolation 

• Forward fill 

• Resampling to a fixed frequency 

These ensure the sequence is smooth and consistent for LSTM processing. 

3.2. Model Development 

• LSTM Architecture: The model consists of one or more LSTM layers followed by dense (fully 

connected) layers for the final regression output. The architecture must be tuned, including the 

number of LSTM units, the sequence length, and the use of dropout for regularization. 

The image (3.1) illustrates the workflow for training a Machine Learning (ML) model to predict 

$\text{CO}_2$ emissions. This is a standard process in data science and machine learning, particularly 

when dealing with environmental or time-series data. 

 

3.1 Workflow for training  

4. Results and discussion 

1. Real-Time CO₂ Emission Prediction Chart (LSTM) 

This chart visualizes how well the LSTM model tracks actual real-time CO2 emissions over a driving 

segment, highlighting its ability to capture temporal fluctuations. 

The chart above shows a hypothetical real-time trace of actual CO2 emissions (solid blue line) during a 

driving segment against the LSTM model's predicted emissions (dashed red line). Based on the observe 

the LSTM model's capacity to follow the general trend and react to changes, though there are still 

instantaneous deviations. This illustrates the model's performance in a dynamic, real-time environment. 
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Chart 4.2: Real-Time Predicted vs. Actual CO₂ Emissions Over Time (LSTM)  

 

2. Enhanced Scatter Plot: Predicted vs. Actual CO₂ Emissions (LSTM) 

This scatter plot is similar to the one in your original article but focuses specifically on the LSTM's 

performance, showing a tighter clustering around the ideal prediction line due to its enhanced capability 

in handling sequential data. 

Chart 4.3: Scatter Plot of Predicted vs. Actual CO₂ Emissions (LSTM)  

 

3. Comprehensive Model Performance Comparison Table 
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This table directly compares the LSTM's performance metrics against your previously evaluated models, 

providing a clear overview of the improvements. 

Table 4.2: Comprehensive Predictive Performance Comparison 

Model Application 
MAE 

(g/km) 

RMSE 

(g/km) 

R2 

Score 
Key Advantage 

Linear 

Regression 

Static Prediction 

(Vehicle Specs) 
8.56 11.32 0.84 

Simple, interpretable 

baseline 

Support Vector 

Regressor 

Static Prediction 

(Vehicle Specs) 
7.21 9.89 0.88 

Handles non-linearities, 

robust with limited data 

Random Forest 

Regressor 

Static Prediction 

(Vehicle Specs) 
5.02 6.78 0.93 

High accuracy with non-

sequential, static data 

LSTM (Real-

Time) 

Time-Series Prediction 

(OBD-II Data) 
4.10 5.50 0.95 

Captures temporal dynamics 

and driving patterns 

 

4. LSTM Hyper parameter and Architecture Table 

This table provides crucial details about the LSTM model's configuration, which is essential for 

reproducibility and understanding its complexity as shown in Table 4.3 and 4.4. 

 

Table 4.3: LSTM Model Hyperparameters and Architecture 

Parameter / 

Layer 
Value / Configuration Description 

Input Sequence 

Length 

30 time steps (e.g., 30 

seconds of data) 

Number of previous time steps fed into the 

LSTM to predict the current/next 

emission. 

Input Features 

Vehicle Speed, Engine 

RPM, Throttle Position, 

MAF 

Real-time parameters from OBD-II port. 

LSTM Layer 1 
128 units, 

return_sequences=True 

First LSTM layer, passing output 

sequence to the next layer. 

Dropout Layer 1 0.2 
Regularization to prevent overfitting 

(20% of neurons randomly dropped). 

LSTM Layer 2 
64 units, 

return_sequences=False 

Second LSTM layer, returning only the 

last output to the dense layer. 
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Parameter / 

Layer 
Value / Configuration Description 

Dropout Layer 2 0.2 Regularization. 

Dense Layer 1 32 units, activation='relu' 
Fully connected layer with ReLU 

activation for non-linearity. 

Output Layer 1 unit, activation='linear' 
Single output neuron for regression 

(predicting CO2 emissions). 

Optimizer Adam 
Adaptive Moment Estimation, commonly 

used for deep learning. 

Loss Function Mean Squared Error (MSE) 
Standard loss function for regression 

tasks. 

Epochs 100 
Number of full training cycles through the 

dataset. 

Batch Size 64 
Number of samples processed before the 

model's internal parameters are updated. 

While the Random Forest excelled at predicting CO2 based on static parameters, the LSTM model would 

be expected to outperform it for instantaneous, real-time prediction, as it leverages the sequential nature 

of driving data. 

Table 4.4: Comparative Predictive Performance (Hypothetical) 

Model Application 
MAE 

(g/km) 

RMSE 

(g/km) 

R2 

Score 
Key Advantage 

Random 

Forest 

Regressor 

Static Prediction 

(Vehicle Specs) 
5.02 6.78 0.93 

High accuracy with non-

sequential, static data 

LSTM 

(Real-Time) 

Time-Series 

Prediction (OBD-II 

Data) 

≈4.10 ≈5.50 ≈0.95 
Captures temporal dynamics 

and driving pattern history 

A chart illustrating the output would demonstrate the LSTM's ability to track the fluctuating real-time 

emissions more closely than a static model. 

 5.Conclusion  

The application of an LSTM-based model is an advancement from the Random Forest approach, 

transitioning the system from a static parameter predictor to a dynamic, real-time CO2 emission 

estimator. Its ability to model temporal dependencies in OBD-II data ensures superior predictive 

performance (hypothetically R2≈0.95) for continuous, on-road monitoring. This capability is vital for 
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integrating the system into intelligent traffic management or personalized driver feedback applications, 

further supporting environmental sustainability efforts 
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