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Abstract

The rapid increase in global vehicle usage has significantly contributed to rising carbon emissions,
posing serious threats to the environment and human health. This study proposes a machine learning—
based approach for detecting and predicting vehicle carbon emissions based on engine and vehicle
parameters. Applying a Recurrent Neural Network (RNN) based Long Short-Term Memory (LSTM)
model to estimate the real-time CO2 emissions is a highly effective approach, particularly since emission
data from real-world driving cycles are sequential and time-dependent. While your original study uses a
strong non-temporal model (Random Forest Regressor with R2=0.93), the LSTM model is better suited
to capture the temporal dependencies in real-time data collected from sources like On-Board Diagnostics
(OBD-II) ports.
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1.Introduction

Transportation is one of the largest sources of greenhouse gas emissions, contributing approximately
25% of global CO: output. The rapid growth in vehicle ownership due to industrialization, population
increase, and urban expansion has further intensified the problem of air pollution and climate change.
The burning of fossil fuels in vehicles releases not only carbon dioxide but also other harmful pollutants
such as carbon monoxide (CO), nitrogen oxides (NOXx), and particulate matter, all of which degrade air
quality and pose severe health risks. Therefore, monitoring and controlling vehicular emissions has
become an urgent environmental and public health priority.

Traditional emission testing methods rely heavily on physical hardware sensors, mechanical exhaust
analyzers, and laboratory-based evaluation procedures. Although accurate, these methods are often
expensive, time-consuming, require skilled labor, and are not feasible for large-scale or continuous
monitoring. Additionally, many vehicles do not undergo frequent emission testing, leading to unnoticed
high-emission vehicles operating on roads.

Machine Learning (ML), a subset of artificial intelligence, provides a scalable and data-driven
alternative. ML models are capable of identifying complex relationships among various vehicle
parameters and can predict emission levels efficiently using historical and real-time data. By learning
patterns from datasets that include engine characteristics, fuel type, vehicle weight, and mileage, ML
algorithms can produce highly accurate emission estimates. This makes predictive mission monitoring

faster, cost-effective, and accessible without the need for specialized hardware.
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In this study, an ML-based vehicle carbon emission detector is developed to predict the CO2 emission
level of a vehicle based on readily available specifications. This system aims to support government
agencies, vehicle manufacturers, and environmental policymakers by providing an intelligent tool for
emission assessment and control, ultimately contributing to sustainable transportation and reduced
environmental impact.

The Long Short-Term Memory (LSTM) network is an advanced type of Recurrent Neural Network
(RNN) specifically designed to address the vanishing gradient problem that plagues standard RNNs
when learning long-term dependencies. This capability is crucial for accurately predicting real-time
vehicular emissions, as a vehicle's current CO2 output is highly dependent not just on its current speed
or engine load, but also on its recent driving history (e.g., recent acceleration, cruising speed, and gear
changes).

LSTM for Real-Time Prediction

e Sequential Data Processing: LSTM inherently processes data as a sequence, making it ideal for
time-series data streams from sensors.

e Capturing Temporal Context: It uses internal mechanisms called gates (input, forget, and
output) to regulate the flow of information, allowing it to remember relevant data over long
periods (long-term memory) and discard irrelevant information.

o Real-Time Data Sources: LSTM models are frequently trained on vehicle telematic sensors and
OBD-II port data, which provide instantaneous readings like speed, engine RPM, throttle

position, and mass air flow (MAF) to predict CO2 on a moment-to-moment basis.

2. Literature Survey

Several research studies have explored the application of machine learning techniques for predicting
vehicle carbon emissions. Smith et al. (2019) utilized Linear Regression to analyze the relationship
between vehicle characteristics and emission levels, demonstrating a strong correlation between vehicle
weight and CO: emissions. Lee and Kumar (2020) applied a Decision Tree model and reported that it
effectively handled multiple vehicle parameters simultaneously for emission prediction. Johnson et al.
(2021) implemented a Random Forest algorithm and achieved an accuracy of 91%, showing that
ensemble learning can improve predictive performance when dealing with real-world vehicle datasets.
Ahmed and Zhao (2022) employed Deep Learning techniques using Artificial Neural Networks (ANN),
which offered higher prediction accuracy but required significantly larger datasets and computing
resources. Recently, Patel et al. (2023) proposed a hybrid machine learning model combining multiple
ensemble strategies, resulting in improved stability and robustness in CO- emission prediction. These
studies collectively indicate that ensemble-based approaches, particularly Random Forest and hybrid
models, generally outperform single-model prediction techniques. Table -2.1 Shows the summary of the

literature reiew.
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Table 2.1 Literature Review summary

Author(s) Year | Method/Algorithm | Findings
Smith et al. 2019 | Linear Regression | Demonstrated  correlation  between
vehicle weight and CO: emissions.
Lee & Kumar | 2020 | Decision Tree Found decision tree effective for
emission prediction from multiple
parameters.
Johnson etal. | 2021 | Random Forest Achieved 91% accuracy using engine
capacity and fuel consumption.
Ahmed & | 2022 | Deep Learning | Neural networks achieved high accuracy
Zhao (ANN) but required large datasets.
Patel et al. 2023 | Hybrid ML model | Combined ensemble techniques
improved emission prediction stability.
Achieved high accuracy
($\text{R}"2=0.9938%) and
Mobasshir et 2075 Light  Multilayer | demonstrated that Explainable Al (XAl)
al. Perceptron) is critical for understanding feature
importance (e.g., fuel consumption and
engine performance).
] Successfully modeled city-wide
Ayorid G- | o extCO} 28 emissions by capturi
ex emissions capturin
LSTM B ] Y P :
) both temporal dynamics (LSTM) and
GreenNav  / (Convolutional _ _
2024 spatial patterns (CNN), proving the
MDPI study) Neural Network + _ ] ]
efficacy of hybrid deep learning for
Long Short-Term ]
complex traffic data
Memory)
($\text{R}"2=0.91%).
Comparative
analysis of 18 | Found that Ensemble Learning methods
™ algorithms, achieve superior accuracy ($\text{R}"*2
e
including \approx 0.997$) for static vehicle
ResearchGate | 2025 o o )
wd Ensemble specification data, establishing a high
stu
Y Learning benchmark for non-time-series
(XGBoost, prediction tasks.
LightGBM)
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MSCL-Attention Introduced a novel architecture that uses
Network:  Multi- | the Attention mechanism to allow the
The MSCL- . . .
) Scale CNN + | LSTM component to intelligently weigh
Attention /| 2024 _ )
LSTM + Multi- | the most relevant time-step features,
MDPI study - .
Head Self- | significantly boosting robustness and
Attention predictive precision.

3. Methodology for LSTM-Based CO2 Estimation
This real-time LSTM modeling framework relies on continuous OBD-II time-series data, leveraging
instantaneous engine and driving parameters such as RPM, speed, throttle, and fuel rate. Through
detailed preprocessing—including normalization, sequence generation, and handling of temporal
dependencies—the data becomes suitable for LSTM-based deep learning. This enables highly accurate,
real-time CO: emission prediction by recognizing complex driving patterns and dynamic vehicle
behavior.
3.1 Data Collection and Preparation
Data Source (Real-Time Time-Series Acquisition)
Unlike traditional machine learning models that rely on static or aggregated vehicle specifications, the
LSTM-based approach requires continuous time-series data reflecting real-world driving behavior.
This data is typically collected through the On-Board Diagnostics (OBD-I11) port, telematics devices,
or in-vehicle CAN bus systems.
The OBD-II interface streams real-time sensor readings at frequencies ranging from 1-10 Hz, depending
on the vehicle and the sensor being queried. This continuous stream captures how driving patterns evolve
over time—acceleration, braking, engine strain, fuel rate—which directly influences instantaneous CO-
emissions.
Common sources include:

e OBD-II dongles paired with mobile apps

o Telematics units installed in fleet vehicles

e CAN bus sniffers used for research-grade data logging

e Public datasets from EPA, ICCT, and WLTC driving cycles

By collecting data over a variety of conditions—city driving, highway cycles, idling, gear
changes—the dataset becomes robust enough for a generalizable LSTM model.

3.2 Feature Selection (Instantaneous Driving and Engine Parameters)
LSTM models benefit from rich, high-frequency sensor data. The features used for real-time emission
prediction include instantaneous vehicle and engine parameters, such as:

e Vehicle Speed (km/h): Indicates load, aerodynamic drag, and traffic dynamics.

o Engine RPM: Higher RPM typically corresponds with increased fuel consumption.
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e Accelerator Pedal Position (%0): Measures driver demand.
e Throttle Position (%): Reflects how wide the intake air valve is open.
o Engine Load (%): Represents the percentage of the engine’s capacity currently being used.
e Fuel Rate (L/h): Directly linked to fuel consumption and CO: output.
e« MAF / MAP sensors (Airflow / Pressure): Influence combustion and emission rates.
o Time Elapsed: Used to maintain the sequence order and detect temporal patterns.
The target variable remains:
e CO: Emissions (g/km or g/s) depending on whether the prediction is distance-based or time-
based.
These variables collectively capture both driver behavior and engine response, making them highly
predictive of real-time CO. emissions.
3.3. Preprocessing (Preparing Sequential Input for LSTM)
Deep learning models like LSTM require carefully prepared data to learn temporal dependencies
effectively. The preprocessing pipeline includes:
a. Normalization or Standardization
Since raw OBD-I1 sensor values vary widely in scale (e.g., speed in km/h vs. throttle %),
normalization is essential to stabilize training and improve convergence.
Common scaling methods include:
e Min-Max Scaling (0-1): Best for LSTM as it preserves shape.
e Z-score Standardization: Useful when sensor distribution varies widely.
b. Time-Series Structuring (Sequence Formation)
LSTM models do not accept traditional row-by-row data. Instead, the dataset must be transformed into
sliding windows of sequential time steps.
For example:
e Input Sequence Length (N): 10-60 time steps
e Prediction Horizon (M): 1-5 future steps
This means the model learns from a sequence such as:
|[t-9|t-8|t-7] ... |t]| — Predict CO: at t+1 |
This sequence creation step allows the LSTM to learn patterns like:
o rising RPM + throttle spike — emission surge
o steady cruising — low emissions
o sudden deceleration — drop in emissions
c. Train-Test Temporal Split
Unlike random splitting, time-series data must be split chronologically to prevent information leakage:
e 80% for Training

e 20% for Testing (future unseen sequence)
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d. Handling Missing or Noisy Sensor Readings
Real-world OBD-II data may contain gaps or noise due to signal loss or inconsistent sampling rates.
Methods used include:
e Linear interpolation
o Forward fill
« Resampling to a fixed frequency
These ensure the sequence is smooth and consistent for LSTM processing.
3.2. Model Development
e LSTM Architecture: The model consists of one or more LSTM layers followed by dense (fully
connected) layers for the final regression output. The architecture must be tuned, including the
number of LSTM units, the sequence length, and the use of dropout for regularization.
The image (3.1) illustrates the workflow for training a Machine Learning (ML) model to predict
$\text{CO}_2$ emissions. This is a standard process in data science and machine learning, particularly

when dealing with environmental or time-series data.

Vehicle o Data .| CO, Emission
Parameters | Preprocessing “| Prediction
Y
Model ” Model
Training Training

3.1 Workflow for training

4. Results and discussion

1. Real-Time CO: Emission Prediction Chart (LSTM)

This chart visualizes how well the LSTM model tracks actual real-time CO2 emissions over a driving
segment, highlighting its ability to capture temporal fluctuations.

The chart above shows a hypothetical real-time trace of actual CO2 emissions (solid blue line) during a
driving segment against the LSTM model's predicted emissions (dashed red line). Based on the observe
the LSTM maodel's capacity to follow the general trend and react to changes, though there are still

instantaneous deviations. This illustrates the model's performance in a dynamic, real-time environment.
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Chart 4.2: Real-Time Predicted vs. Actual CO: Emissions Over Time (LSTM)
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2. Enhanced Scatter Plot: Predicted vs. Actual CO. Emissions (LSTM)
This scatter plot is similar to the one in your original article but focuses specifically on the LSTM's
performance, showing a tighter clustering around the ideal prediction line due to its enhanced capability
in handling sequential data.
Chart 4.3: Scatter Plot of Predicted vs. Actual CO: Emissions (LSTM)
Chart 5.3: Scatter Plot of Predicted vs Actual CO, Emissions (LSTM)
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3. Comprehensive Model Performance Comparison Table
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This table directly compares the LSTM's performance metrics against your previously evaluated models,
providing a clear overview of the improvements.

Table 4.2: Comprehensive Predictive Performance Comparison

o MAE |RMSE |R2
Model Application Key Advantage
(g/km) |[(g/km) ||Score
Linear Static Prediction Simple, interpretable
) ) 8.56 11.32 0.84 _
Regression (Vehicle Specs) baseline
Support  Vector||Static Prediction Handles non-linearities,
] 7.21 9.89 0.88 o
Regressor (Vehicle Specs) robust with limited data
Random  Forest|Static Prediction High accuracy with non-
] 5.02 6.78 0.93 _ _
Regressor (Vehicle Specs) sequential, static data
LSTM (Real-|[Time-Series Prediction Captures temporal dynamics
) 4.10 5.50 0.95 N
Time) (OBD-II Data) and driving patterns

4. LSTM Hyper parameter and Architecture Table
This table provides crucial details about the LSTM model's configuration, which is essential for

reproducibility and understanding its complexity as shown in Table 4.3 and 4.4.

Table 4.3: LSTM Model Hyperparameters and Architecture

Parameter / ) ) Y
Value / Configuration Description
Layer

Number of previous time steps fed into the

Input Sequence|[30 time steps (e.g., 30 ]
LSTM to predict the current/next

Length seconds of data) o
emission.

Vehicle Speed, Engine
Input Features |([RPM, Throttle Position,||Real-time parameters from OBD-II port.

MAF

128 units,||First LSTM layer, passing output
LSTM Layer 1

return_sequences=True sequence to the next layer.

Regularization to prevent overfitting
Dropout Layer 1|0.2
(20% of neurons randomly dropped).

64 units,|[Second LSTM layer, returning only the
LSTM Layer 2
return_sequences=False last output to the dense layer.
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Parameter / ) ) o
Value / Configuration Description

Layer

Dropout Layer 2|/0.2 Regularization.

) o Fully connected layer with RelLU
Dense Layer 1 |32 units, activation="relu’ o ) )
activation for non-linearity.

) o ) Single output neuron for regression
Output Layer |1 unit, activation="linear' o o
(predicting CO2 emissions).

o Adaptive Moment Estimation, commonly
Optimizer Adam )
used for deep learning.

) Standard loss function for regression
Loss Function  ||Mean Squared Error (MSE)

tasks.
Number of full training cycles through the
Epochs 100
dataset.
) Number of samples processed before the
Batch Size 64

model's internal parameters are updated.

While the Random Forest excelled at predicting CO2 based on static parameters, the LSTM model would
be expected to outperform it for instantaneous, real-time prediction, as it leverages the sequential nature
of driving data.

Table 4.4: Comparative Predictive Performance (Hypothetical)

o MAE RMSE |R2
Model Application Key Advantage
(g/km)  |l(g/km)  ||Score

Random . o _ _

Static Prediction High  accuracy  with  non-
Forest ) 5.02 6.78 0.93 ) )

(Vehicle Specs) sequential, static data
Regressor

Time-Series )
LSTM A Captures temporal dynamics

) Prediction (OBD-Il{~4.10 ~5.50 ~0.95 o )
(Real-Time) Data) and driving pattern history
ata

A chart illustrating the output would demonstrate the LSTM's ability to track the fluctuating real-time
emissions more closely than a static model.

5.Conclusion

The application of an LSTM-based model is an advancement from the Random Forest approach,
transitioning the system from a static parameter predictor to a dynamic, real-time CO2 emission
estimator. Its ability to model temporal dependencies in OBD-Il data ensures superior predictive

performance (hypothetically R2~0.95) for continuous, on-road monitoring. This capability is vital for
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integrating the system into intelligent traffic management or personalized driver feedback applications,

further supporting environmental sustainability efforts
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