A SURVEY ON SMART AGRICULTURE USING WIRELESS SENSOR NETWORK ON IOT WITH CLOUD COMPUTING
Keywords:
Internet of Things (IoT), Cloud Computing, Smart Agriculture, precision agriculture, WSNAbstract
IoT is one among the technology where the new developments are introducing day by day. The future computing and communication technology relies under integration of IoT and Cloud. This technology generally migrate with traditional agriculture methods to control the cost, maintenance and monitoring performance. Generally, precision agriculture sensors monitor to agriculture related temperature, humidity, Soil PH level, nutrition level, water level and so on. The development of geomatics in agriculture maintains economic viability with satellite and aerial imagery in farming enterprises. Advances in Wireless Sensor Networks (WSN) and image sensor identifies the landscape especially manageable as agriculture production zones effectively. This paper focused survey on typical applications of agricultural based IoT network with cloud support. This survey used to understand the different technologies to build and develop smart agriculture. This survey helps to create friendlier environments and efficient agricultural productions for the migration of people to the cities..
Downloads
References
• Foughali, K., Fathallah, K., & Frihida, A. (2018). Using Cloud IOT for disease prevention in precision agriculture. Procedia computer science, 130, 575-582.
• Ferrández-Pastor, F. J., García-Chamizo, J. M., Nieto-Hidalgo, M., & Mora-Martínez, J. (2018). Precision agriculture design method using a distributed computing architecture on internet of things context. Sensors, 18(6), 1731.
• Abbasi, M., Yaghmaee, M. H., & Rahnama, F. (2019, April). Internet of Things in agriculture: A survey. In 2019 3rd International Conference on Internet of Things and Applications (IoT) (pp. 1-12). IEEE.
• Farooq, M. S., Riaz, S., Abid, A., Abid, K., & Naeem, M. A. (2019). A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. IEEE Access, 7, 156237-156271.
• Kakamoukas, G., Sariciannidis, P., Livanos, G., Zervakis, M., Ramnalis, D., Polychronos, V., ... & Tsitsiokas, N. (2019, December). A Multi-collective, IoT-enabled, Adaptive Smart Farming Architecture. In 2019 IEEE International Conference on Imaging Systems and Techniques (IST) (pp. 1-6). IEEE.
• Gunasekera, K., Borrero, A. N., Vasuian, F., & Bryceson, K. P. (2018). Experiences in building an IoT infrastructure for agriculture education. Procedia Computer Science, 135, 155-162.
• Harun, A. N., Mohamed, N., Ahmad, R., & Ani, N. N. (2019). Improved Internet of Things (IoT) monitoring system for growth optimization of Brassica chinensis. Computers and Electronics in Agriculture, 164, 104836.
• Mekala, M. S., & Viswanathan, P. (2020). A survey: energy-efficient sensor and VM selection approaches in green computing for X-IoT applications. International Journal of Computers and Applications, 42(3), 290-305.
• Zyrianoff, I., Heideker, A., Silva, D., Kleinschmidt, J., Soininen, J. P., Salmon Cinotti, T., & Kamienski, C. (2020). Architecting and deploying IoT smart applications: A performance–oriented approach. Sensors, 20(1), 84.
• Pham, T. V. H. (2018). Overview of IoT development in Agriculture and Applications in Vietnam. University of Engineering and Technology, VNU.
• Khattab, A., Habib, S. E., Ismail, H., Zayan, S., Fahmy, Y., & Khairy, M. M. (2019). An IoT-based cognitive monitoring system for early plant disease forecast. Computers and Electronics in Agriculture, 166, 105028.
• Navarro, E., Costa, N., & Pereira, A. (2020). A systematic review of IoT solutions for smart farming. Sensors, 20(15), 4231.
• Butpheng, C., Yeh, K. H., & Xiong, H. (2020). Security and privacy in IoT-cloud-based e-health systems—A comprehensive review. Symmetry, 12(7), 1191.
• Vani, P. D., & Rao, K. R. (2016). Measurement and monitoring of soil moisture using cloud IoT and android system. Indian Journal of Science and Technology, 9(31), 1-8.
• Filev Maia, R., Ballester Lurbe, C., Agrahari Baniya, A., & Hornbuckle, J. (2020). IRRISENS: An IoT platform based on microservices applied in commercial-scale crops working in a multi-cloud environment. Sensors, 20(24), 7163.
• Visconti, P., Giannoccaro, N. I., de Fazio, R., Strazzella, S., & Cafagna, D. (2020). IoT-oriented software platform applied to sensors-based farming facility with smartphone farmer app. Bulletin of Electrical Engineering and Informatics, 9(3), 1095-1105.
• Mentsiev, A. U., Gerikhanov, Z. A., & Isaev, A. R. (2019, December). Automation and IoT for controlling and analysing the growth of crops in agriculture. In Journal of Physics: Conference Series (Vol. 1399, No. 4, p. 044022). IOP Publishing.
• Debauche, O., El Moulat, M., Mahmoudi, S., Manneback, P., & Lebeau, F. (2018, April). Irrigation pivot- center connected at low cost for the reduction of crop water requirements. In 2018 International Conference on Advanced Communication Technologies and Networking (CommNet) (pp. 1-9). IEEE.
• Mentsiev, A. U., Isaev, A. R., Supaeva, K. S., Yunaeva, S. M., & Khatuev, U. A. (2019, December). Advancement of mechanical automation in the agriculture sector and overview of IoT. In Journal of Physics: Conference Series (Vol. 1399, No. 4, p. 044042). IOP Publishing.
• Suciu, G., Fratu, O., Vulpe, A., Butca, C., & Suciu, V. (2016, June). IoT agro-meteorology for viticulture disease warning. In 2016 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom) (pp. 1-5). IEEE.
• Aazam, M., Zeadally, S., & Harras, K. A. (2018). Offloading in fog computing for IoT: Review, enabling technologies, and research opportunities. Future Generation Computer Systems, 87, 278-289.
• Sharma, A. K. (2020). Design and development of cloud based architecture for smart agriculture.
• Andrade, E., Nogueira, B., de Farias Júnior, I., & Araújo, D. (2021). Performance and Availability Trade- Offs in Fog–Cloud IoT Environments. Journal of Network and Systems Management, 29(1), 1-27.
• Nayak, S., Nayak, M., & Patel, G. S. IoT in agriculture. Smart Agriculture: Emerging Pedagogies of Deep Learning, Machine Learning and Internet of Things, 93.
• Singh, S., & Mohan Sharma, R. (Eds.). (2019). Handbook of Research on the IoT, Cloud Computing, and Wireless Network Optimization. IGI Global.
• Rekha, H. S., Nayak, J., & Naik, B. (2020). 6 Impact of IoT in agriculture: advances and challenges. Internet of Things, 127.
• Gaur, A. S., Budakoti, J., Lung, C. H., & Redmond, A. (2017, August). IoT-equipped UAV communications with seamless vertical handover. In 2017 IEEE Conference on Dependable and Secure Computing (pp. 459-465). IEEE.
• Foughali, K., Fathallah, K., & Frihida, A. (2019). A Cloud-IOT Based Decision Support System for Potato Pest Prevention. Procedia Computer Science, 160, 616-623.
• Vadlamudi, S. (2021). Rethinking Food Sufficiency with Smart Agriculture using Internet of Things. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(9), 2541-2551.
• Devi, K. K., Premkumar, J., Kavitha, K., Anitha, P., Kumar, M. S., & Mahaveerakannan, R. (2021). A Review: Smart Farming Using IOT in the Area of Crop Monitoring. Annals of the Romanian Society for Cell Biology, 3887-3896.
• Kang, S., Baek, H., Jun, S., Choi, S., Hwang, H., & Yoo, S. (2018). Laboratory environment monitoring: Implementation experience and field study in a tertiary general hospital. Healthcare informatics research, 24(4), 371.
• Raikar, M. M., Desai, P., Kanthi, N., & Bawoor, S. (2018, September). Blend of Cloud and Internet of Things (IoT) in agriculture sector using lightweight protocol. In 2018 international conference on advances in computing, communications and informatics (ICACCI) (pp. 185-190). IEEE.
• Aazam, M., Zeadally, S., & Harras, K. A. (2018). Deploying fog computing in industrial internet of things and industry 4.0. IEEE Transactions on Industrial Informatics, 14(10), 4674-4682.
• Bagwari, S. Impact of Internet of Things Based Monitoring and Prediction System Inprecision Agriculture.
• Tejić, B., Đukić, N., Tegeltija, S., Ostojić, G., & Stankovski, S. IoT based system for monitoing food products.
Kedari, S., Vuppalapati, J. S., Ialapakurti, A., Kedari, S., Vuppalapati, R., & Vuppalapati, C. (2018, January). Adaptive Edge Analytics-A Framework to Improve Performance and Prognostics Capabilities for Dairy IoT Sensor. In International Conference on Intelligent Human Systems Integration (pp. 639-645). Springer, Cham
Downloads
Published
Issue
Section
License
Copyright (c) 2024 P. Prabhakaran, R. Malathi Ravindran (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.